The Combinatorics of Reduced Decompositions
نویسندگان
چکیده
This thesis examines several aspects of reduced decompositions in finite Coxeter groups. Effort is primarily concentrated on the symmetric group, although some discussions are subsequently expanded to finite Coxeter groups of types B and D. In the symmetric group, the combined frameworks of permutation patterns and reduced decompositions are used to prove a new characterization of vexillary permutations. This characterization and the methods used yield a variety of new results about the structure of several objects relating to a permutation. These include its commutation classes, the corresponding graph of the classes, the zonotopal tilings of a particular polygon, and a poset defined in terms of these tilings. The class of freely braided permutations behaves particularly well, and its graphs and posets are explicitly determined. The Bruhat order for the symmetric group is examined, and the permutations with boolean principal order ideals are completely characterized. These form an order ideal which is a simplicial poset, and its rank generating function is computed. Moreover, it is determined when the set of permutations avoiding a particular set of patterns is an order ideal, and the rank generating functions of these ideals are computed. The structure of the intervals and order ideals in this poset is elucidated via patterns, including progress towards understanding the relationship between pattern containment and subintervals in principal order ideals. The final discussions of the thesis are on reduced decompositions in the finite Coxeter groups of types B and D. Reduced decompositions of the longest element in the hyperoctahedral group are studied, and expected values are calculated, expanding on previous work for the symmetric group. These expected values give a quantitative interpretation of the effects of the Coxeter relations on reduced decompositions of the longest element in this group. Finally, the Bruhat order in types B and D is studied, and the elements in these groups with boolean principal order ideals are characterized and enumerated by length. Thesis Supervisor: Richard P. Stanley Title: Norman Levinson Professor of Applied Mathematics
منابع مشابه
The Displacement and Split Decompositions for a Q-Polynomial Distance-regular Graph
Let Γ denote a Q-polynomial distance-regular graph with diameter at least three and standard module V . We introduce two direct sum decompositions of V . We call these the displacement decomposition for Γ and the split decomposition for Γ. We describe how these decompositions are related.
متن کاملDecompositions of complete multipartite graphs via generalized graceful labelings
We prove the existence of infinite classes of cyclic Γ-decompositions of the complete multipartite graph, Γ being a caterpillar, a hairy cycle or a cycle. All results are obtained by the construction of d-divisible α-labelings of Γ, introduced in [A. Pasotti, On d-graceful labelings, Ars Combin. 111 (2013), 207–223] as a generalization of classical α-labelings. It is known that such labelings i...
متن کاملThe intersection problem for cubes
For all integers m, nand t, we determine necessary and sufficient conditions for the existence of (1) a pair of 3-cube decompositions of Kn having precisely t common 3-cubes; and (2) a pair of 3-cube decompositions of Km,n having precisely t common 3-cubes.
متن کاملHamilton decompositions of line graphs of perfectly 1-factorisable graphs of even degree
The proof of the following theorem is the main result of this paper: If G is a 2k-regular graph that has a perfect 1-factorisation, then the line graph, L(G), of G is Hamilton decomposable. Consideration is given to Hamilton decompositions of L(K 2k ? F).
متن کامل